Sharp Lower Bounds for the Dimension of the Global Attractor of the Sabra Shell Model of Turbulence

نویسنده

  • PETER CONSTANTIN
چکیده

In this work we derive lower bounds for the Hausdorff and fractal dimensions of the global attractor of the Sabra shell model of turbulence in different regimes of parameters. We show that for a particular choice of the forcing term and for sufficiently small viscosity term ν, the Sabra shell model has a global attractor of large Hausdorff and fractal dimensions proportional to logν−1 for all values of the governing parameter ε, except for ε = 1. The obtained lower bounds are sharp, matching the upper bounds for the dimension of the global attractor obtained in our previous work. Moreover, the complexity of the dynamics of the shell model increases as the viscosity ν tends to zero, and we describe a precise scenario of successive bifurcations for different parameters regimes. In the “three-dimensional” regime of parameters this scenario changes when the parameter ε becomes sufficiently close to 0 or to 1. We also show that in the “two-dimensional” regime of parameters, for a certain non-zero forcing term, the long-term dynamics of the model becomes trivial for every value of the viscosity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic Study of Shell Models of Turbulence

In this paper we study analytically the viscous ‘sabra’ shell model of energy turbulent cascade. We prove the global regularity of solutions and show that the shell model has finitely many asymptotic degrees of freedom, specifically: a finite dimensional global attractor and globally invariant inertial manifolds. Moreover, we establish the existence of exponentially decaying energy dissipation ...

متن کامل

A Note on the Regularity of Inviscid Shell Model of Turbulence

In this paper we continue the analytical study of the sabra shell model of energy turbulent cascade initiated in [11]. We prove the global existence of weak solutions of the inviscid sabra shell model, and show that these solutions are unique for some short interval of time. In addition, we prove that the solutions conserve the energy, provided that the components of the solution satisfy |un| ≤...

متن کامل

A Note on the Regularity of Inviscid Shell Models of Turbulence

In this paper we continue the analytical study of the sabra shell model of energy turbulent cascade. We prove the global existence of weak solutions of the inviscid sabra shell model, and show that these solutions are unique for some short interval of time. In addition, we prove that the solutions conserve the energy, provided that the components of the solution satisfy |un| ≤ Ck−1/3 n ( √ n lo...

متن کامل

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

Small Viscosity Sharp Estimates for the Global Attractor of the 2-d Damped-driven Navier–stokes Equations

We consider in this article the damped and driven two-dimensional Navier–Stokes equations at the limit of small viscosity coefficient ν→0. In particular, we obtain upper bounds of the order ν on the fractal and Hausdorff dimensions of the global attractor for the system on the torus T , on the sphere S and in a bounded domain. Furthermore, in the case of the torus, we establish a lower bound of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006